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Abstract: The fully protected monomeric unit 19 of the marine macrodiolide. swinholide A (l), 
was obtained with 337% ds by a Mukaiyama aldol reaction between 16 and 5. followed by a 
boron-mediated reduction to give the syn 1,3-diol18. Deprotection (-)-pm-swinholide A 
tbe putative precursor of 1. 

Swinholide A (l), fast isolatedla in 1985 from the marine sponge Theonellu swinhoei, is a 44- 
membered dimeric macrodiolide1b-d which displays potent cytotoxic activity against various human carcinoma 

cell lines Swinholides B-GIGf and a biosynthetic precursor, the monomeric acid pFe-swinholide A (2),lfsS have 

also been isolated from ZIteonella. The related 22-membered macrolide scytophycin C (3),* produced by the 

terrestrial blue green alga Scyronemu pseuddwjinanni. has a close structural homology with the swinholides 

and also exhibits potent cytotoxic activity. ‘Ihe significant biological activity of these macrolides, combined with 
tbe scarcity of the natural supply, make swinbokide A and scytophycin C important targets for total synthesis.3~4 

We now report (i) the synthesis of a common Cl-C18 methyl ketone 4 for swinholide A and 

scytophycin C using a Brown asymmetric crotylboration reaction, (ii) its stereocontrolled Mukaiyama aldol 

coupling with the C&J32 aldehydc 5, and (iii) an efficient synthesti of (-)-pre-swinholide A. 
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We have already reported the asymmetric synthesis of 53b and 63c as Ctg-& and Cl-C15 subunits 
for swinholide A (Scheme 1). The sequential aldol coupling of these chii aldehydes with a suitable butanone 
synthon, followed by Cl7 ketone reduction. was now required. This should give a protected version of 2. 
correctly incorporating the (15&16S,17S,19R)-stereocenttes. For this purpose, the intrinsic diastereofacial 

preferences of aldehydes 6% and 7 with various enolate and ally1 metal reagents were fast detetmined.3c For 

Cl@19 bond formation, L&is acid-promoted additions of allylsilane or silyl enol ether nucleophiles to 7 

predominantly occurred by desired re-face attack under substrate control to give 8 (>95% ds, X = CH2 or 0). 

For syu aldol coupling at C15-Cl6 however, the &chiral aldehyde 6 showed an unexpectedly high preference 

for undesimd s&face attack with simple boron enolates 9. Hence, reagent control was nczessaty3e to enforce re- 
face attack on 6 to give 10. 

C,&,, Bond Form&ton: Bubstmta Control 

These model coupling studies indicated the best way forward for the stereocontrolled synthesis of both 

swinhohde A and scytophycin C. Reugenrcontrolled CD-C& bond formation with aldehyde 6, using a masked 

“butanone thermodynamic enolate” equivalent, should be followed by substrate-controlled fragment coupling at 
Cls_Clg using a Mukaiyama aldol reaction. 

As shown in Scheme 2, use of a chiral crotyl boron reagent allowed control in the formation of the 
C15-Cl6 bond with aldehyde 6, where subsequent Wacker oxidation of the terminal alkene gave the 

corresponding methyl ketone 4.5 The syn crotylboration of 6 was best performed using the Brown Ipc reagent 

11.6 which gave alcolioll2 with z-95% ds in 60% yield. The corresponding Roush tartrate reagent 14.7 when 

used in toluene (-90 + -25 “C), proved less selective in this mismatched situation, generating a 2 : 1 ratio of 12 

and 13 in 80% yield. The (15S)conftguration assigned to the major alcohol 12 was established by 1H NMR 

analysis of the diastereomeric (R)- and (S)-MTPA esters.8 Reaction of 12 with methyl ttiflate (30 equiv) in 2,6- 
di-fert-butylpyridine then gave the corresponding methyl ether 15 in 88% yield. Under optimum conditions, the 

Wacker oxidation9 proved highly selective for the terminal double bond in 15. Fre-treatment of a mixture of 
palladium diihloridc (20 mol%) and freshly prepared copper (I) chloride (2 cquiv) in aqueous DMF with oxygen 

for 2 h, was followed by addition of 15. Stirring was then maintained under an oxygen atmosphere at room 
temperature for 2 days. This gave a 66% yield of 4, [a]: = -73.2” (c 2.5, CHC13). and 22% recovered 15 

(85% yield based on recovered starting material). Thus, methyl ketone 4.5 a Cl-Ctg subunit for both 
swinholide A and scytophycin C, was obtained in just three steps from 6 with excellent control over the two 

new stereocenttes. 
The Mukaiyama aldol coupling of the two fmgments 4 and 5 was performed under the conditions 

established from the model studies, 3e which led to high levels of Felkin-Anh control. The silyl enol ether 16 

was first prepared from 4 by kinetic euolisation with lithium hexamethyldisilaz.i& (ITIF, -78 “C) and in situ 

trapping with trimethylsilyl chloride. After isolation using a pH 7 bufferlpentane work-up, 16 was used 
immediately without purification. Addition of boron trifluoride etherate (2 equiv) to a mixture of 5 and 16 
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(CH2CIZ. -78 “C. 30 min) led to a clean aldol addition, providing the (19R)-adduct 17, Cored) = -65.3O (c 3.8, 
CHC13). ss the sole product19 in 91% yield. The intmduction of the final stereocentm at Cl7 was achieved by a 

modified Narasaha-FVssad syn reduction of &hydroxy ketone 17 via the pre-formed boron chelakll-14 The 
best conditions used lithium borohydride in TI-IF/MeOH 8s the reducing agent. 1 lb.13 Treatment of 17 with di-n- 
butylmethoxyborane in THF/MeOH (5:l) at -78 “C was foilowed after 15 mitt by the addition of lithium 

borohydride in THF. Slow wantring to 4 “c gave complete conversion, leading to isolation of the desimd syn 
13-diol 18 with >97% ds in 90% yield. Dial 18. [a# = -65” (c 0.4, CHC13), was then protected as its para- 

rnethoxybenxylidene acetal19, [c# = -75.6O (c 3.4, CHC13), in 98% yield using p_MeO(C&)CH(OMe)2 
with catalytic CSA in CHfll2. 

reagent 12:lJ y&u 

11 wQ5:5 60% 

14 87:93 80% 

CC 
l2cR=H 13 

dj- 
15:R=Me(88%) 

5 ~pm-swlnho/lda A (2)) 

1s: P=H(BO%) >W%ds 
19: P-P = @hO(C&)CH (W%) 

Scheme 2 (a) 11 (4 equiv). THF, -78 T. 2 h; H202. pH7 bufferNeOH, (b) 14 (4 equiv), PhMe, 4A mol. sieves, 
-90 + -25 Oc, 18 h; (c) Meozlf (30 equiv), 2.6-di-tert-buty@yridinet-butylpyridine. 65 T. 2.5 h; (d) PdCl2 (20 mol%). CuCI, ti (1 
atm), 1O:l DMFIkl20.20 T, 48 h; (e) Lii{SiMe3)2. MejSiCI. Et3N, THF, -78 T. 30 min; v) BFyOEtZ (2 equiv). 
CH2C12, -78 *C, 30 min; (s) “BulBOMe, 5:l THFIMeOH, -78 “c. 15 mio; LiBQ. -78 + -40 T. 3 h; Hfl2, pH7 
buffedMe.0~ (It) p-MeO(CgHq)CH(oMe)2. CSA (5 mol%), CH2CX2.20 “C, 2 h; (9 40% aq. HF. MeCN. 0 + 20 “C. 2 
h; 69 NaOH. MeOH. Hfl, 20 ‘T, 5 h. 

Compound 19 represents a fully protected derivative of the monomeric seco-acid of swinholide A. It 

was identical5 in all respects to material previously prepared by a more elaborate and less selective coupling 
strategy, where the C15C16 and clg<19 both were formed in the reverse order.4 Full deprotection can be 
achieved under tbe previously described conditions4 to give (-)-pm-swinholide A, which has been successfully 
correlated with authentic material derived from swinholide A. Thus, 18 and 19 have the correct stereochemistry 
for the synthesis of swinholide A. 
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In summary, a highly efficient coupling strategy has been developed to provide useful quantities of an 
advanced intermediite 19 for swinholide A. The high level of steteocontrol(>92% ds from 6) and convergency 
associated with the present synthesis are notable. Further studies towards completing the total synthesis of 
swinholide A and scytophycin C are now underway. 
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