

Pergamon

0040-4039(94)E0529-7

Towards the Synthesis of Swinholide A and Scytophycin C. A Highly Stereocontrolled Synthesis of (--)-Pre-Swinholide A.

Ian Paterson,* John G. Cumming, Julian D. Smith,

Richard A. Ward and Kap-Sun Yeung

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: The fully protected monomeric unit 19 of the marine macrodiolide, swinholide A (1), was obtained with >97% ds by a Mukaiyama aldol reaction between 16 and 5, followed by a boron-mediated reduction to give the syn 1,3-diol 18. Deprotection gave (-)-pre-swinholide A (2), the putative biosynthetic precursor of 1.

Swinholide A (1), first isolated^{1a} in 1985 from the marine sponge *Theonella swinhoei*, is a 44membered dimeric macrodiolide^{1b-d} which displays potent cytotoxic activity against various human carcinoma cell lines. Swinholides B-G^{1e,f} and a biosynthetic precursor, the monomeric acid pre-swinholide A (2), ^{1f,g} have also been isolated from *Theonella*. The related 22-membered macrolide scytophycin C (3),² produced by the terrestrial blue green alga *Scytonema pseudohofmanni*, has a close structural homology with the swinholides and also exhibits potent cytotoxic activity. The significant biological activity of these macrolides, combined with the scarcity of the natural supply, make swinholide A and scytophycin C important targets for total synthesis.^{3,4}

We now report (i) the synthesis of a common C_1-C_{18} methyl ketone 4 for swinholide A and scytophycin C using a Brown asymmetric crotylboration reaction, (ii) its stereocontrolled Mukaiyama aldol coupling with the C₁₉-C₃₂ aldehyde 5, and (iii) an efficient synthesis⁴ of (-)-pre-swinholide A.

We have already reported the asymmetric synthesis of 5^{3b} and 6^{3c} as $C_{19}-C_{32}$ and $C_{1}-C_{15}$ subunits for swinholide A (Scheme 1). The sequential addol coupling of these chiral aldehydes with a suitable butanone synthon, followed by C_{17} ketone reduction, was now required. This should give a protected version of 2, correctly incorporating the (15*S*,16*S*,17*S*,19*R*)-stereocentres. For this purpose, the intrinsic diastereofacial preferences of aldehydes 6^{3c} and 7 with various enolate and allyl metal reagents were first determined.^{3e} For $C_{18}-C_{19}$ bond formation, Lewis acid-promoted additions of allylsilane or silyl enol ether nucleophiles to 7 predominantly occurred by desired *re*-face attack under substrate control to give 8 (>95% ds, X = CH₂ or O). For syn aldol coupling at $C_{15}-C_{16}$, however, the β -chiral aldehyde 6 showed an unexpectedly high preference for undesired *si*-face attack with simple boron enolates 9. Hence, reagent control was necessary^{3e} to enforce *re*face attack on 6 to give 10.

These model coupling studies indicated the best way forward for the stereocontrolled synthesis of both swinholide A and scytophycin C. *Reagent*-controlled C_{15} - C_{16} bond formation with aldehyde 6, using a masked "butanone thermodynamic enolate" equivalent, should be followed by *substrate*-controlled fragment coupling at C_{18} - C_{19} using a Mukaiyama aldol reaction.

As shown in Scheme 2, use of a chiral crotyl boron reagent allowed control in the formation of the $C_{15}-C_{16}$ bond with aldehyde 6, where subsequent Wacker oxidation of the terminal alkene gave the corresponding methyl ketone 4.⁵ The syn crotylboration of 6 was best performed using the Brown Ipc reagent 11.⁶ which gave alcohol 12 with >95% ds in 60% yield. The corresponding Roush tartrate reagent 14.⁷ when used in toluene (-90 \rightarrow -25 °C), proved less selective in this mismatched situation, generating a 2 : 1 ratio of 12 and 13 in 80% yield. The (15*S*)-configuration assigned to the major alcohol 12 was established by ¹H NMR analysis of the diastereomeric (*R*)- and (*S*)-MTPA esters.⁸ Reaction of 12 with methyl triflate (30 equiv) in 2,6-di-*tert*-butylpyridine then gave the corresponding methyl ether 15 in 88% yield. Under optimum conditions, the Wacker oxidation⁹ proved highly selective for the terminal double bond in 15. Pre-treatment of a mixture of palladium dichloride (20 mol%) and freshly prepared copper (I) chloride (2 equiv) in aqueous DMF with oxygen for 2 h, was followed by addition of 15. Stirring was then maintained under an oxygen atmosphere at room temperature for 2 days. This gave a 66% yield of 4, $[\alpha]_D^{20} = -73.2^\circ$ (*c* 2.5, CHCl₃), and 22% recovered 15 (85% yield based on recovered starting material). Thus, methyl ketone 4,⁵ a C₁-C₁₈ subunit for both swinholide A and scytophycin C, was obtained in just three steps from 6 with excellent control over the two new stereocentres.

The Mukaiyama aldol coupling of the two fragments 4 and 5 was performed under the conditions established from the model studies,^{3e} which led to high levels of Felkin-Anh control. The silyl enol ether 16 was first prepared from 4 by kinetic enolisation with lithium hexamethyldisilazide (THF, -78 °C) and *in situ* trapping with trimethylsilyl chloride. After isolation using a pH 7 buffer/pentane work-up, 16 was used immediately without purification. Addition of boron trifluoride etherate (2 equiv) to a mixture of 5 and 16

(CH₂Cl₂, -78 °C, 30 min) led to a clean aldol addition, providing the (19*R*)-adduct 17, $[\alpha]_D^{20} = -65.3^\circ$ (c 3.8, CHCl₃), as the sole product¹⁰ in 91% yield. The introduction of the final stereocentre at C₁₇ was achieved by a modified Narasaka-Prasad syn reduction of β -hydroxy ketone 17 via the pre-formed boron chelate.¹¹⁻¹⁴ The best conditions used lithium borohydride in THF/MeOH as the reducing agent.^{11b,13} Treatment of 17 with di-*n*-butylmethoxyborane in THF/MeOH (5:1) at -78 °C was followed after 15 min by the addition of lithium borohydride in THF. Slow warming to -40 °C gave complete conversion, leading to isolation of the desired syn 1,3-diol 18 with >97% ds in 90% yield. Diol 18, $[\alpha]_D^{20} = -65^\circ$ (c 0.4, CHCl₃), was then protected as its *para*-methoxybenzylidene acetal 19, $[\alpha]_D^{20} = -75.6^\circ$ (c 3.4, CHCl₃), in 98% yield using *p*-MeO(C₆H₄)CH(OMe)₂ with catalytic CSA in CH₂Cl₂.

Scheme 2 (a) 11 (4 equiv), THF, -78 °C, 2 h; H_2O_2 , pH7 buffer/MeOH; (b) 14 (4 equiv), PhMe, 4Å mol. sieves, -90 \rightarrow -25 °C, 18 h; (c) MeOTf (30 equiv), 2,6-di-*tert*-butylpyridine, 65 °C, 2.5 h; (d) PdCl₂ (20 mol%), CuCl, O₂ (1 atm), 10:1 DMF/H₂O, 20 °C, 48 h; (e) LiN(SiMe₃)₂, Me₃SiCl, Et₃N, THF, -78 °C, 30 min; (f) BF₃•OEt₂ (2 equiv), CH₂Cl₂, -78 °C, 30 min; (g) ⁿBu₂BOMe, 5:1 THF/MeOH, -78 °C, 15 min; LiBH₄, -78 \rightarrow -40 °C, 3 h; H₂O₂, pH7 buffer/MeOH; (h) p-MeO(C₆H₄)CH(OMe)₂, CSA (5 mol%), CH₂Cl₂, 20 °C, 2 h; (i) 40% aq. HF, MeCN, 0 \rightarrow 20 °C, 2 h; (j) NaOH, MeOH, H₂O, 20 °C, 5 h.

Compound 19 represents a fully protected derivative of the monomeric seco-acid of swinholide A. It was identical⁵ in all respects to material previously prepared by a more elaborate and less selective coupling strategy, where the C_{15} - C_{16} and C_{18} - C_{19} bonds were formed in the reverse order.⁴ Full deprotection can be achieved under the previously described conditions⁴ to give (-)-pre-swinholide A, which has been successfully correlated with authentic material derived from swinholide A. Thus, 18 and 19 have the correct stereochemistry for the synthesis of swinholide A.

In summary, a highly efficient coupling strategy has been developed to provide useful quantities of an advanced intermediate 19 for swinholide A. The high level of stereocontrol (>92% ds from 6) and convergency associated with the present synthesis are notable. Further studies towards completing the total synthesis of swinholide A and scytophycin C are now underway.

Acknowledgement: We thank the SERC (GR/H01922), Zeneca Pharmaceuticals Division (CASE studentship to JGC), the Croucher Foundation (scholarship to KSY), Rhône-Poulenc Rorer (Dagenham), and Merck Sharp & Dohme (Terlings Park) for their support, and Dr R. J. Butlin (Zeneca) for helpful discussions.

References and Notes

- (a) Carmely, S.; Kashman, Y. Tetrahedron Lett. 1985, 26, 511. (b) Kitagawa, I.; Kobayashi, M.; Katori, T.; Yamashita, M.; Tanaka, J.; Doi, M.; Ishida, T. J. Am. Chem. Soc. 1990, 112, 3710. (c) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashita, M.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2409. (d) Doi, M.; Ishida, T.; Kobayashi, M.; Kitagawa, I. J. Org. Chem. 1991, 56, 3629. (e) Kobayashi, M.; Tanaka, J.; Katori, T.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2960. (f Tsukamoto, S.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Perkin Trans. 1 1991, 3185. (g) Todd, J. S.; Alvi, K. A.; Crews, P. Tetrahedron Lett. 1992, 33, 441.
- (a) Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem. 1986, 51, 5300; (b) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986, 58, 263; (c) Moore, R. E.; Banarjee, S.; Bornemann, V.; Caplan, F. R.; Chen, J. L.; Corley, D. E.; Larsen, L. K.; Moore, B. S.; Patterson, G. M. L.; Paul, V. J.; Stewart, J. B.; Williams, D. E. Pure Appl. Chem. 1989, 61, 521.
- (a) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261. (b) Paterson, I.; Cumming, J. G. Tetrahedron Lett. 1992, 33, 2847. (c) Paterson, I.; Smith, J. D. Tetrahedron Lett. 1993, 34, 5351. (d) Paterson, I.; Yeung, K.-S. Tetrahedron Lett. 1993, 34, 5347. (e) Paterson, I.; Cumming, J. G.; Smith, J. D.; Ward, R. A. Tetrahedron Lett. 1994, 35, 441.
- 4. Paterson, I.; Smith, J. D.; Ward, R. A.; Cumming, J. G. J. Am. Chem. Soc. 1994, 116, 2615.
- All new compounds gave spectroscopic data in agreement with the assigned structures. 4 had ¹H NMR (assigned using COSY) δ (400 MHz, CDCl₃) 7.29 (1H, d, J = 15.7 Hz, H₃), 5.94 (1H, dd, J = 7.4, 7.4 Hz, H₅), 5.78 (1H, d, J = 15.7 Hz, H₂), 5.76 (1H, m, H₁₁), 5.62 (1H, m, H₁₀), 4.32 (1H, m, H₉), 4.05 (1H, m, H₇), 3.73 (3H, s, CO₂Me), 3.69 (1H, m, H₁₅), 3.56 (1H, m, H₁₃), 3.30 (3H, s, C₁₅OMe), 2.65 (1H, qd, J = 7.1, 4.4 Hz, H₁₆), 2.39 (2H, m, H₆), 2.18 (3H, s, Me₁₈), 1.95 (2H, m, H₁₂), 1.75 (3H, s, C4Me), 1.73 (1H, m, H_{14A}), 1.64 (1H, ddd, J = 14.3, 10.6, 2.7 Hz, H_{8A}), 1.57 (1H, ddd, J = 14.5, 7.1, 4.9 Hz, H_{14B}), 1.38 (1H, ddd, J = 14.3, 9.9, 2.6 Hz, H_{8B}), 1.09 (3H, d, J = 7.1 Hz, C₁₆Me), 0.87 (9H, s, ^tBu), 0.10 (3H, s, SiMe_A), 0.08 (3H, s, SiMe_B); ¹³C NMR δ (100.6 MHz, CDCl₃) 211.2, 167.9, 149.6, 137.8, 134.2, 130.2, 123.7, 115.4, 78.7, 69.3, 68.1, 63.9, 57.2, 51.4, 49.6, 40.6, 37.7, 36.8, 30.9, 29.5, 25.9, 18.1, 12.5, 11.0, -4.3, -4.7; HRMS (CI, NH₃) (M+H)⁺ found 509.3299, C₂₈H₄₉O₆Si requires 509.3298. Full spectroscopic data for 19 are reported in the supplementary material for ref 4.
- (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919. (b) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570.
- 7. Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339.
- 8. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
- 9. (a) Tsuji, J.; Nagashima, H.; Nemeto, H. Org. Synth. 1984, 62, 9. (b) For a review, see: Tsuji, J. Synthesis 1984, 369.
- 10. No other isomers were detected by HPLC and 400 MHz ¹H NMR analysis of the crude product. A small amount (5%) of starting ketone 4 and aldehyde 5 were recovered after chromatography.
- 11. (a) Narasaka, K.; Pai F.-C. Tetrahedron 1984, 40, 2233. (b) Paterson, I.; Goodman, J. M; Isaka, M. Tetrahedron Lett. 1989, 30, 7121.
- 12. Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.
- 13. Reaction in the absence of methanol as co-solvent was much less selective. The LiBH₄ presumably first reacts with MeOH to produce a bulkier and more selective alkoxyborohydride reagent which leads to high levels of stereocontrol by axial attack on the pre-formed boron chelate. We have successfully used this procedure in several demanding situations: (a) ref 11b and 14a. (b) Paterson, I.; Lister, M. A.; Norcross, R. D. Tetrahedron Lett. 1992, 33, 1767. (c) Paterson, I.; Yeung, K.-S. unpublished results.
- For one-pot, boron aldol/LiBH₄ reduction sequences generating 1,3-syn diols, see: (a) Paterson, I.; Channon, J. A. Tetrahedron Lett. 1992, 33, 797. (b) Paterson, I.; Perkins, M. V. Tetrahedron Lett. 1992, 33, 801.

(Received in UK 1 March 1994; accepted 10 March 1994)